
OS = ① Referee File Descriptors PIPES = ONE-WAY communication
② Illusionist

-

③ Give
- pointsto open file description between two processes

Kernel VS User
in global table

Two open calls
Pipefd[o] = read-only

- file description * creates two pipefd (l] = write-onlyMANAGES MANAGES ① file offset DIFFERENT entries
-

- Process user-level apps ② file access more
in fD table and Empty : blocks read

- file system Standard user-level ③ file status flags
points to Df FULL : blocks write

core within restricted file description
- Memory Virtual addresses

⑦ ret to physical 10 in global table

- Device ⑤ # of times opened
* effectively closed after last write

most shell commands descriptor -> reads untilOf
system calls * dup to duplicate ED to

security & Protection point to same file * uses a kernel buffer in MEMORY

Hardware support
* OrpZ = replace existing FD

① Privileged instructions
Default FDTable sockets = I gueues : 1 in each dir

↳ unsafe instr f user mode
(0) StDIN-FILENO ↑bidirectional communication between

② Memory Isolation-> no access
(1) STDOUT-FILENO & printf processes

outside of process adorspace (2) STDERR
_
FILENO writesBrittoeithera

here③Interrupts -> Kernel gain control processes on diff machines

from running process & fork= duplicated descriptor
& FD obtained w/ socket/bind/connect

① safe transfer -> transfer from
point to SAME entry in global listen/accept

user mode kernel mode file table HIGH / COW API

Kernel> User cannot LEVELleshead AGHLEVEL

user
trus2Osyscalls = processes requestars pushed onto stack - direct use of syscall interface - buffered access : topen()

certain kernel servicesPargs validated in open() ,
read) , write() , close() fread

, forite,close BUFFERED!!
-

* SYNCHRONOUS event Kernel memory
-open() - returns file descriptor

- opening returnsFilt o strict
-

& exec , read , write
-FD meaningful to kernel - File has memory for buffer

② Traps = software interrupts - read() or write) causes
and ED for the file

exceptions- > Internal= syscall

-

- fread/write filters through
* SYNCHRONOUS event Buffet

-call read in a loop
& exceptions - loop to get bytes w/ fread

& write in while loop since

③ Hardware interrupts = external return from
not guaranteed to write all bytes out

FILf * = Buffered IO

* ASYNC event interrupt FDAPI = Immediate 10 L per-file userlevel buffer
& Timer

, I/0 * os transitions from

IXernel- user to enter inreads = single - operates on user space first

To handle interrupt : analhander execution sequence that

①processor detects interrupt can be separately schedulable

②suspend user prog , switch to kernel-inside same process : not isolated from each other
·E

⑤ ID interrupt type , invoke handler - share address space Pthread-create = thread that runs start- routine

pthread - exit = terminates calling thread & returns

① restore userprogram
- share I/O state value-por to any successful join call

- individual execution pthread-join = suspends execution of calling thread until

Process =Instance of running program
- individual stack & register state target thread terminates

* process control block (PCB) :Stores comparison AcrossAcross
category

- process State - memory limits creation fork() pthread-created)
- PID

page table
I

- open file list PTBR(e) instructionsstinctsamesetregisters
& executing program w/ restricted rights

address Heap/static vars separate shared
& Illusions of : private CPU evirtualper stack separate se separatea

! ·private memory process
& resources allocated to each process

file descriptors separate shared

* Isolate processes from all others synchronizationwaitpure-joinas

Process Management API overhead Higher Lower
process = container where threads

exit terminate process
protection Higher Lower execute

copy current process as child Duplicates
:

- open file
fork & allocate PCB w/ ouplicated -> - address space

- file points
memory content

- core/data *process ID and

lintgo - registers * same global FD return value Not
& new PID, same EIP Pao - stack as parent copied

exec change program currently running
on process -> REPLACES it (replaces code/data)

& EIP = start of new program , reinit SP
,
FP

wait wait for process to finish * SIGSEEV = Seg fault

Kill St send signal (interrupt-like)to another processcan choose ANY S to sendSIGKIL an outsigkil

sigaction set handers for signals -> can override defaut w/ signal handler be overridden
execute signal hander when event has occurred

conditionalvariables =
arere of threads

concurrency waiting forth inside
· atomic operation= always runs to completion /not #lows sleeping inside critical section

critical section
by releasing lock at time we go to sleep

* ex: loads/stores of words
a purpose : threads can access/modify shaDBUSYWANTcondition

- synchronization : use atomic ops to ensure thread typeset struct coud-vars greed lock before cond-wait
, signal , broadcast

cooperation struct list waiters condwait (cond-vara cond ,
locka lock)

3 condvar create semaphore
- mutual exclusion : ensure only I thread does a thing

cond-init (coud-vara cond)
sema-init (a waiter sema , 0)

& a particular time
Initialize coud's listOf waity

Pushwaterissemaphore into waitea

atomically release

-critical section = piece of cool that only ONE thread can sema-down (waiter-sema) locka suspend
lock-acquire (lock) calling thread

execute at once execution

cond-signal (condvar a cono) cond-broadcast (condvarscond)
- race condition= when multiple threads or process access litwuites quere Not empty While waiters quee not

or modify shared resources at same time pop whiter off wake up empty

execute sema-uphextwaitingis Pop waiter off

a lock() before entering critical section & only wakes up One waiting
execute sema-up

& unlock) when leaving
Thread Wake up All threads

* WIT if locked -> all sync involves waiting Monitor = lock & Zerotcondvariables for managing

① Busy wait rely on atomic loads/stures-PNOTcycles concurrent access to shared data

② Enable/disable interrupts * uses infinite synchronized buffer

test&Set = simple lock that provides mutual exclusion & must hold lock when doing condvar ops
-

wo entry into the Kernel
HOARE MESA

test &set (& address) E
int mylock=- release (intothe lock) if (is Empty (oqueve) While (is Empty (0 querel)

result = M [address Ji acquire (into the lock) 3 &the lock = 0; cond-wait (& but-CV
, & but-lock

While (test & sethe lock)); 3 cond-Wait (&brf-CV
, but-lock)

MCaddress] = 1 ; 3busy wait
item = dequere (& quere)

item = dequere (aquer
return result ;

3 If STATEMENT WHILE LOOP

Spinlock implementation= busy waiting & check once if coke available * more practical &y

so thread Loops until lock is free HOUNY = When thread signals cond var,the repeatedly check for coke

& atomic operations& waiting thread immediately takes control of MESA= When thread
lock & starts executing signals cond var , waitingFUteX = similar to testa set in linux space
~strong guarantee that cond is tre when waitas thread moved to ready

① futex-wait -> check if conon still holds * Dependent on of scheduler quere butNot run

sleep until wehear futex-wake
calling convention immediately↳ no more busy waiting

② futex-wake- wake up at mostl waiting threads VER Before calling function. * no guarantee abt execution
O Save caller-saved APRs (EAX , ECX, order

& user level to maintain queues for sleeping threads EDX) onto stackneededAFTER func

call
while loop to just consistently keep trying to regain lock & avoid racee ② Push param onto stack in

↑ have to keep checking cond
-

& for efficience -> want to minimize # of syscalls over

Add paddingBefore param to ensure
int mylock = C

16 byte alignment

acquire (int the lock) [release (intothelock)S ③ CALL FUNCTION Cesp = 16 byt aligned atp)

While (test & set (the lock)) &
the lock = oi and push return address & jump to func

Autex (theLock
,
FUTEX-WAIT, 1)

Fotex (Othelock, FUTEX-WAKE,) EEE
3

O Push EBP onto stack ,
setp = EBP

3avoids syscalls when possible al ② Allocate stack space for vars

semaphores = lock w/ non-negative int value
③ SaveCallee saved EPRsCEBXD

Down() : wait for semaphore to be positive DemonSe
↳ decrement by 1 (like wait) Restorecallesaved

GPRs (if any fromporae

Up() : Increment semaphore by1-wakes Up waiting p Questore caller's EBP from stack

⑤ Return from func call by popping caller

Down on semphore ofO= potting thread to P return addy a jumping

CALLEl

Mutual Exclusion : value is 0 or 1 (like lock)

scheouling : value can be > = 0

typeset struct semaphoreEsema-down (semaphore & sema sema-up (semaphore a sema

Disable interrupts Disable interrupts

unsigned value
While (semaphore value = =0 IwakeUpsleepinghrda4Struct list waite

3 semaphore boths Enable interrupts

enable interrupts

LOCKS = prevent others from changing critical section

↳ can use internal semaphore , init to

lockClockkto No
lock-acquire (lock-l0(k)

sema-down (Clock -> sema)
sema-init(Clock-> sema , 1) set holder of lock to caller

lock-release (lock a lock)
reset lock holder back to NULL

sema-up (& lock e sema)

Mutual exclusion SCHEDULING

& I hit sema= ① Init sema to G

② Down sema in critical ② Down sema in
section

① up sema when exit
waiting thread

critical ③ after work , up

sema in working
Thread

CALLER
EBP

existingcalra
Caller saved GPR

padding
EVERSE

espe
fonas as

return address
HIGH ADDRESS

&stack grows
CALLED

name

areviceEBP
EBP of caller stack DOWNWARD

stack-align

Local vars ESP = stack

ESP

cullee saved GPRs ana pointer

return address

LOW ADDRESS

1 Epilogue after func returns

① remove params from stack

② restore caller-saved GPRs (if any

scheduling = deciding which threads to give access to starration=thread fails to make progress,noefinitely

↓ completion time = waiting time + run time of process

↳time sensitivee/~wait time = total time on queue

↑ thoroughput = rate at which tasks completed (tasks/see
↳↓ overhead (context switching

For RR

↑ fairness = sharing resources in equitable manner ① At end of quantum X , add prev thread to

ready grere

Priority Inversion = high Priority task BockED waiting ② Add any new threads arriving at quantum

on lowpriority task -> medium runs X+ 1 to ready list
slice of

POLICIES -more context switching = more cache misses COU time
first Come

,
First Served (FCFS/FIFO) Round Robin (FR) = run processes in looping order for fixed quanta

& scheoule in order of arrival - one program Dafter a expires : task preempted ↓ added to end of ready queue

-wit context switch

scheduled until done LARGE q = -FCfS us small ge lots of Interleavings
~ simple

, good for thoroughput (fcontext switching) /no starvation
, w/n process

, a time quanta,it = (n-1)9
X CONVOY EFFECT (short tasks Stuck behind long)

X lots of context switching,
HIGH completion time

variable any completion time

Shortest Job First (sif) NONPREEMPTIUt Multi-level Feedback Que (MUFQ) : multiple queues/tes

* schedule shortest task first * Each quere has own scheduling policy enters at highest priority

~ optimal aug completion time (simultaneous arrival) * ensure CPU doesn't no all use up resource = more DOWN

10 priority > CPU priority does not use all = more UP

X subject to starvation , convoy effect
High -> RR

J

have to know job duration ~ Approximates SRTf low -> FCFS

ShortestRemainingTime first CSRT X Othello Strategy : request 1/0 to stay on higher priority

* PREEMPT resource if task arrives & has Lottery Scheduling : give each task some # of lottery +ix

SHORTER completion time
NO & Draw random ticket at each time slice -> task holding

~ always optimal any completion time , convoy effect

ticket is granted resource
X starration , have to know job oration

~ No starvation , no priority inversion , approximate SRTF W/

generalized processor sharing X unfair over short run more tickets to shorter jobs
fewer tickets to longer jobs

- Infinitely fine grained context switching stride Scheduling = deterministic lottery scheouler

where to share processor among multiple threads

Ideal service time = time that task i should receive & Each task given some of tickets n ,
-

Si (to ,ti) = f
, (to) & (t,- to)

Real service time = time that task ; actually receives
↳ Stride =Wu larger share of tix= smaller

Lag= local-real service time
on every time slice : choose task with lowest PAS

-

fict)=weighthal share of processor that init pass = min (existing tasks' pass vals) at start of task

2 wj thread ; should receive at time E ↳When task chosen : pass += stride
jECt)

Set of active threads ~ No starvation I smaller stride ->task runs

more often
weighted fair Quering = schedule threads in order of EARLIEST

physical finishing time StrictPriority= schedules tasks w/ highest priority
GPS

w+Q
~ umportant runs first priority donation where lower

X starration
, priority inversion -> task given same EffECTIVE

priority as higher one

EEVDF = earliest eligible virtual deadline

=n Ve = vo- +

lag y
used for

V = Ve +
rescheduling

scheorling eligible time
vitual time

↓d
① Look e threads w/ eligible requests v(e) < v(e)

② serve request w/ earliest virtual deadline v(o)
③ reschedule using the Ve

,
vo equations if thread finished

* requests made in real
-

time not virtual timew
Whenthreadbecomecit is

use this to calculate

virtualtime VCE) lag= ideal real

POSITIVE VAG = EARLIER next eligible I NEG LAG = LATER eligible time Since it took so much CPU time
time

* I lag
:

Vekti =

Vek + UTimeturetoa

peadlock= cyclic waiting for resources

deadlock -> starvation, starvation deadlock

Handle deadlock

①Denial Costrich-pretend it doesn't exist)

② prevention-write code that doesn't deadlock

③ Recovery
- let readlock happen & recover afterwards

④ Avoidance -oamically delay resource regs so no deadlock

& cannot check for deadlock -> check for unsafe state

Necessary butNot sufficient & Draw out current,
available

,
needed tables

Banker's Algorithm O check if request -> Unsafe state
-> assignment

② state max resource needs in advance eige

③ allow thread to continue if
-> request eige

available resources
- # requested Imax

⑦ release resources =>>>>>
simple WITH CY CVE

↑ available += allocated(thread] resource deadlock but No
allocation deadlock

regular algo checks if request [thread] available graph

Apretend request isgranted -> can we enter deadlock? Demand Paging = keep only active pgs in memory
↳ If yes : deny/hang place others on disk

, Pre = invalid
* If unfinished Not empty-> deadlock is possible

Memory + Addressing
Workingset subset of addy spaced used during execution

TB= 8bits
Numbers Time virtualmemory behia1 kB = 2 10

1 ms = 10-35
- protection, of replacements & context switches

1 MB = 2 zo 3 1 Ms = 10"- 65
-translation

n . RSS YPHYS-mEM
1GB= 2

1
30B 1 ns = 102-as

1 TB = 2140 B 1 ps = 102-12s - efficiency Invalid PrE OMMU traps to OS w/page fault
OBase and Bound baseregisterstatingadoresa

story ② find a replace pgw/pg from disk
segment Ps replacement /Policy

~ simple ,
can easily relocate policies ⑤ reset pg table

, restart Instruction
X Internal AND external fragmentation NOT STACK

↓Difficult interprocess sharing Multi level pagetables↳
& W/hardware

awwara - sparse addy space : large Pgtablerelocation : Wasten
physical address = virtual address base

STACK
w/ lots of unused entries

use MMU = hardware as memory management unit
- TREf of Pg tables where each

segmentation = place segments independently STACK level maps to other parable
↑ READ-ONLY can be shared

,
use segment map

~ minimizes internal fragmentation Belady anomaly : Increasing Cache - BOHOM Page table = translation

X external fragmentation still problem Can INCREASE miss rate -> applies to to physical address

N ON stack

Paging (single level
copy on write

① Markall pgs read only PTBR

off set & copy pg table to new processPASA
A s

-PAGE FAULT
VIRTUAL ADDY ③ once either attempt write

offset
a

① page fault hander - make doot store
4 Physical Copy -> install new pg in unmapped L2

↑ table of triggered process
of bits # of bits = size of page
for # Of LARGER page fewermetala Translation Lookside Buffer= cache for
pagesia 20112

fragmentation

virtual- physical memory limitations--

220 payes 212 = 210 . 22=4kB

ITBR= page table base register startingayofpytayas TAG DATA

Virtual address bits = #VPN bits)+ # offset bits) UPN PPN metadata

physical address bits = # PPN bits) + (# offset bits) AMAT= (Hit ratehit time) + (miss rate x miss time)
virtual pages

= 2"(#VPN bits)
physical pages = 21 #PPN bits) Improve context switching & FlushTD in TLB
pg Size (bytes) = 2"(# Offset bits) page walk
virtual mem size (bytes) =#Virtual Pgs)x (pgsize B) ->

PTBR
concatenate

physical mem size (B) = (#physical pgs) x (pgsize B) ISt PT : Ador : Base + Index
<,

x Entry Size

Pg table entries = # virtual pgs 220pT : Ador : PPN2
,

(look in phys men)/linxzex
PTE bits = (APPN bit) + #metadata bits) T

PTE size (B) = #(PTE bits) / S *check metadata : convert to binary and check each bit
concatenate

page table size (B) = #PTE X PTE size (B) Phys ador : PPNL2 (look in phys mem) 11 offset

I/0 File Systems = transforms block interface of disks into files/dir

Access patterns :

& abstraction layer maintained by OS
, filehasmetadatasizeowher

① Character dev = character stream
Directory= list of mappings from human-readable file

* NOT addressable names to specific uncelving files

② Block dev = fixed size blocks Hard links = map DIff names to SAMf file # ~ I file = many names
- * cannot span across file system/

* YES addressable 3 #0 registers ↳ In [target] [dest]

③ Network dev = separate interface for statusand soft links = directory entries that map name to anothername more across tile systems
-

networking
Access Timing ⑤ data ↳

In-s[target] [dest] File System Designs

DSINCUNOUblocking ① fast file system = multi leveltree
structure

* filet index -> set of inode array
② Non-blocking

= No wait , quickly return
* inode file wmetadatapeo

the

③ Asynchronous = allow other processing
wo witing

↳ non-blocking * pr = Block numbers

response time Direct ptr = point directly to block w/filt data
= latency =

time to complete indirect pr = point to array of direct ptry

Double indivet potr = point to away of indiret pts
thoroughput =

bandwidth= rate

Device Drivers = connect10 hardware of tasks performed
& I number =EX of inode in node array (used as file #)

(2 kiB= 2")
↓ Example max disk size = 2

disk size
blocks x block size

A standard interface or high-level abstractions IkiB= 210

2KiBBlocks
12 direct a

=-32 x 2" = STiB

IMiB = 228 I indiret ptr
Top half=start I/0 operations& flippedin

to

1 GiB = 230
I double indirect por max filesize = block size < # oth direct pto (includingfrom

Bottom half-service interrupts
file block pire , triple Indirect pr

=

2"xC
+

SSLSI TiB = zu0
#of ptrs = BockSize (bytes)

=wiresforcomm/connecting n devices - protocolo a
Y (bytes)

-cheap-easy to connect X one at a time + arbitration ② File Allocation table =

array where each element corresponds to disk block

logic for who gets control

PCIe 1/0 bus interface for high-speed , not parallel ,
& File -> collection of disk blocks ↑ Indexoffirst entMt ea

fast serial channels

& FAT -> linked list one on one w/blocks

~ Network Cards ,
SSDs

, graphics X mouses , keyboards
CPU

cards USB & File size encoded

Device controllers = now processors talk to 110 revices in 32 bits -> size limited to U GiB ~ on lots of portable & embeoied devices

ways to intract w/ controller Entry =0 = FREE X allocating multiple sectors takes long time

① Programmed 1/0 (PIO) = processor involved in every he quick format = manaa

X might not be able to exploit spatial locality

bute transfer

①port-mapped 10 (PMIO) a separate bus

mof physical address space
-

* standard load/store -> responsibility on
controller

& No physicaladdresspace - Set in

·eonta
② Direct mapped access (DMA) device can write

DIRECTLY to main memory wo CPU intervention

USBUPGVDMADD
interrup

storage Devices ↳ ~ Good for LARGE auts
of data

D Hard DiSK Drive (HDD) : magnetic disk storage device

~ persistent memory -> stays even computer
is off

* data stored in fixed size blocks = sectors

↑ sequential accessd random access

Request : gueving + controller-seek + rotational + transfer
time Y ↑ ↑ I ↑

transferring
software quere
in device oriver harwar position headarmector bloa

bits

* any rotational latency = Ex Time for full rotation

& transfer time=
ata size

&thoroughput=
rector size

Trunster rate request time

* Disk intelligence : track skewing (stagger sectors by track time
sector sparing (remap bad ones to spare)

,
use buffer memory to store secters

read byEXAMPLE expected thoroughput
ask head

au seek = 8 ms seemsSets to & When head
NOV so MiB/stransfertime= alr in right
sectors = 4 KiB So MiB spot, can innor

① Thoroughput=kiB

8 + o++ transferseektimetrottina

atareadw/hedplattersanflash
inore seek time

(NOR, NAND
② Flash memory = electrical circuits for persistent storage

· can erase fixed# of times

* request time = gueving + controller-transfer

* writing to cell requiresASING it

~ faster read/write /stages
③ flash translation Layer map logical flash pgs - phys pages
* indirectiona copy on write to avoid wear out

& near levelling to spread out writes

writetonew - updatemapping eruse ol a
in background

< name : file numbers majority
small
files&

< name : file#>
& cannot call read on directory

<name :paths

~Blockgroup Crectorytia
~Bmap allocation for free

~reserves 10%· for efficiency
vSipsetintea - FD entry -> OPEN file descriptor (ouplicates)

sequential accesses

~Sequential , random,

noexternal
fa

a ity
X internal frag

#Ptr/block=Size OUSB
NOT I NODE BASE D

metadata

NO HARD LINKS estoreIntely
~sequential , no external , bidfiles X random ,Internal , localityo

X
~ compatible

I
ocks as free

full format = quick format-zero out data blockszo out # fat Entries = vome sitente

ENTRY @dotnext closafree cluster
, bad cluster

NTFS = master file table , entries = file metadata +data

-variable size extents / variable length (NOT fixed size blocks like FfS

- Bige use extents superbig : use pas to lists of extents

~ supports journaling

Buffer Cache: memory to cache disk blocks/name translations

Implemented in OS software w/CRU replacement policy Not write-through
- Read ahead prefetching = fetch sequential blocks early which immediately
- Delayed writes = flush to disk -> either efailing & periodically puts on disk

Reliability Courability & availability
imply

availability= probability that system can accept& process requests

"nines" of probability : 99 .9 %. = 3 nines

Ourability = ability of system to recover data despite faults/fault tolerance

small defects = Reed-solomon error correcting codes (ex single disk failure)

short term data preservatione battery backed RAM (NVRAM) (ex for buffer cache

Long term data preservation-> redundant array of Inexpensive disks (RAID)

reliability = ability of system to perform its required functions under colons for specific

period of time (FAT & FFS) +Esck

careful overinga recover : break into small chunks ,
write in specific over

recover scans looking for incomplete actions X Not foolproof , mostly works

versioning & copy on writwrite new versions of data into New place on disk Not updating

in place -> update mappings/references
~ easy recovery be old data still intact

~ data only being added

CREATING A FILE

careful overing (ffs) Recovery(tsck)
O Allocate data block O Scan inodetable

② If any unlinked (not in oir
② write data block

deletea put in lost & found

⑤ Allocate inout
③Compare free block bitmap

① write inode block

against inore trees

⑤ update free map

updatedirectoentcandrecuefor misa

Transactions-atomsomeneverin-benea Distributed systems = coordinating multiple
computersoperations ↓

: consistent state -> consistent state Updatedisk Scalability : add resources to system to support more work

* If any fail-> roll back ~/ transactions

transparency : mask complexity behind simple interface
↳ otherwise , commit ! Not indiv read/write

Atomicity protocols : agreement on how to communicate (syntax/semantics
Consistency /1 valio state to Reach entry = IDEMPOTENT

another) fu same effect when executed once/ Remote procedure call-execute cool on remote machine

Isolation sconcument is uk many times f(f(x))= f(x) in simple way
wability Conce committed serialization : express object in byte sequence

won't be erased
CIRCULAR

Big/littleIndian : first bit in adoy = most/least sin bit

Methods : (BOTH USE LOG = BUFFER OnDISK)
* maintain inOURNAL before

Marshalling : converting values to canonical form (serializing)
① Journaling Filesystem committing

commit entry Binding : converting user-visible name to network enopoint

①Preparation phase = append all updates to log makes it

↳ dynamic binding allows server flexibility

② commit phase = log commit record atomic STUB = give on client/server

③ write back = async apply committed update ① client stub = marshalling/serializing arys

① garbage collect any completed transaction unmarshalling/serializing return values

in background commit ② server stub- unmarshalling/deserializing any

* write to log instead of disk directlyTin marshalling/serializing return values

* once wot transaction written to log addingea Distributed File systems
- disk applies changes X Not exact snapshot ①Virtual filesystem Switch (VfS) =

Interface between Kernell's view of files & underlying
↓ file system (-Atiffs , NFS ...)

remove transaction from log V can rollback
Me system call interfact API for diff types of filesystem * UfS like translator for

& If crush when writing -> Incomplete,Not applied file systems *

* If crush when aying -> re-apply ransaction after recovery u object types

① superblock object = specific mounted filesystem
& Distinguish between remote & Local filt)

⑦ Log Structured file system (LSFS) : log I storage ② mode object = specific file
-

write everything sequentially * ALL DATA IN LOG ⑤ Dentry object = directory entry

~ writing random sectors-better than normal
FORMD ① file object = open file associated u/ process

② Network File System CNES)
Distributed Decision Making Translates read/write VFS calls & RPCs for remote file system
General's Paradox =Impossible to achieve simultaneous

* STATELESSA : RPC has all into to ID a file
/ scalabilityacknowledgement over UNRELIABLE network

readAt(iNumber ,position) vs Read Copenfile)

two phase commit = decive if all processes commit/AIDEMPOTENTO re-read/re-write blocks who side effects

about transaction eventually-> I coordinator, rest participants & weak consistency on client polls server periodically -> client may have state or partial updates
O coordinator asks all processes to vote : VOTE-REQ & If CON

CRASH before & Write through caching o modified data committed to server's disk before returning results

② participants vote VOTE-COMMIT/VOTE-ABORT , log logging global want sequentialovering /simple
, portable ,

efficient

③ If ALL vote-commit -> GLOBAL - COMMIT commit X sometimes inconsistent/doesn't scale
↓otherwise -> GLOBAL-ABORT

, LOG
LOSE ALL VOTES

④ participant commit on about on receive , log ↓
d about

respond /
ACK

Failure :

- > any participant error & coord votes ABORT

-> If all voted commit - wait on cor to recover MapReduce & Span
when

MR= model that distributes tasks over large clusters

map: (K_in , V-in) - list (k-inter, V-inter) I coordinator , many workers

Internet= allow apps to function on all networks reduce : (K
-

inter ,
list (V-inter) -> list (K-out, v-out)

packet = basic unit of communication & convert files into pairs of (K , v) /k-inter list (V-inter

② Define map function-> applyto

↳ chunk of data , some metadata , source
a IL files

destination IP
③ Shuffle ! All elements /save

transport layer on top of packets key go to same mory

& Define reduce function -

UDP = best effort delivery apply to result of map

CV-in)
+CP = reliable inorder, but Moreoverhead

end to end : functions should be

Implemented at enopoints of

communication system
- NOT in middle

= auct tolerance = lame clustera a lot of failures
& implement at lower layer only as

envancement ① cooninator fails -> ABORT

-②Realign progressorcompletedhaptasksitmapperas is

I check for completed map

Apache Spark= how to reuse intermediate results

-> cache instead of recomputing
* Resilient Distributed Dataset (RDDs) : Immutable collections

of objects in memory

- transformations : apply func on RDD -> make another RDD

Gailyevaluated w/ iterator-> replay transformation

to regenerate
- Actions -> return vale to program/write data to disk

* Lineage
: logged sequence of transformations to

create RDD

*& Failures Node fails -> lost RDD partition -> recomputer/
lineage

oordinaterlogs -> becomes stoneof truth

persistent decision

& does NOT solve General Paroux - still uncertainty

MAPREDUCE STEPS

Reading /a/b/c .+x+ w/FfS file system
find file # of 5

renea
↓

Knesses direntryna

e
& read 11 direct outa blocks (1)

③readinvirtbc (42-11= 3)

