
Rasterization = sample points to see if Inside triangle

Aliasing high free signals are under-sampled
↳ can resemble continuous signal of lover freq

Anti-aliasing = removing high frea signals before sampling
Box blur = ① Select Kernel size kxk

② for each pixel in ing , replace its value w/ERAGE of all pixel values in Kernel region
③ slide Kernel across entire im
& simple but FAST

-
-

supersampling = artificially increase sampling rate above sampling frequency

winding over = order of vertices of- convention is CONTER Clockwise

& If neg cross product -> cur order -> Swap 2 vertices

Navist free =FIhnqvist= Itsampling -> No aliasing from fregs in signal that are Less

than Nyquist freq
* If revice can sample at 100Hz -> Nyquist = SONz

#sampling> Ifsignal frampling = lowest free you can sample al before aliasing

↑ If signal = 20Hz -> sampling ABOVE UO HE

Transformations

Homogeneous coordinates = represent point in ridim space/coordinates

(x, y)T - (x ,y , w)T w = 1 -> point allows us to represent pointsa rectors in same

(x,y , z)+- (x ,y , z,w)tw= 0 -> vector J coordinate system

#sometric = preserve distances between

every pair of points on object

~ Rotations
, translations , reflections

X scaling , shearing

* transformation matrices multiplied

RIGHT to LEfT

Flip acrossy-axis Flip across X-axis

I I
[+3][Tz] [Ti] = [Final +]

]]
origin

Point (1, 0) Point (0 , 1)
L

coordinate systemtransformation : (0 , v , v) to (x iY)
↑

2 unit rectory

camera transformation : camera (e , v , v) Transform matrix

↑ View
eye point I

Barycentric coordinates = weighted distance from given point to vertices

=A+ BB+ yC
2+ B+

y = 1

&used for interpolation

Texture mapping
= moving from screen space to texture space (viv)

& can interpolate texture coordinates (UN) w/v= Vo + But UUz

v= /Vo +BV + VVz

Nearest sampling= taking color of texel that's closest to barycentric coordinate

Bilinear sampling = weighted any of 1 nearest texels w/3 LERPs

↳ Ierp (X 1 Vo ,vi) = vo + X (v.
- vo)

Mip-mapping :

①pre-compute lower res versions of texture

② store textures in mipmap

② Adaptively choose mipmap level D according to scene

Ige

Bilinear= only use de mipmap level

Trilinear = LERP between two mipmap

clowres)
levels

& BIG jump in texture space = far away -> hi level

* Small jump intexture space
= close up - how level

chinures)

-> operations on geometry= transformations to screen space

-> operations onpixels = hidden surface removal/per-fragment shading

ReflectioModel

Blinn-phong =

&
default w
Gouraud
shading

Kala Y ↑DIFFUSE SHADING

Ko()max(0,
n.1) SPECULAR SHADING

h= bisector (v , 1) = #
11v + el)

-
PS

shininess

Ks(E)max(0 , n .h)

phong shading= Interpolate vertex normals prpixel
-

& scow

Gourard shading = compute light per vertex

-

* fAS)

Hidden surface removal : objects overlap e only display what's visiblea front

* track depth = z-valve of frugments
↳ pixel takes value ofcosest frugment infEbuffer-

initialized to infinity

Cubic Hermite Interpolation : combine discrete pets into shape

Input : values (p) & derivatives (p) & endpoints

output : cubic polynomial that interpolates

soln : weighted Sum of Hermite basis functions

P(t) = noHo(t) + h ,
H , (t) + hzHzCt)+ hy Hy(t]

PLA) = [HoLt) HiCt) HeL) HoCS

/h
Catmull Rom Interpolation

Input : sequence of points

① calculate slopes between alternating pts

② use Hermite interpolation

output: splinew/cl continuity

do review math

Bezier curves

Cubic Bezier : specify derivatives w/ control points

de Casteljav Algorithm = recursively compute intermediate control points through LERP

Pi = (1- t)pi + t (Pi+1)

control
Catmull Rom = easy to use when you know set of points ahead of time-> ensures

curve passes through All control pts (except maybe enopts)

Halfedges = represent meshes to represent 3D shapes

↑useful to use do-while loops

* ->next) to yet next edge
-> twin)) to get opposite halfedge

Preview cooing examples !!! *

Edge flip=flip a halfedge Edge Split = Insert midpoint into halfedge

& no elements created or destroyed *elements are addedo

Edge collapse = replace edge (c , 0) w/vertexi

& delete elements* Close 2faces for 6)

subdivision :
course mesh -> smooth algorithmically

Loop subdivision = for triangle meshes

Osplit eachO face into 1- new 0
, new vertices

②update old a new renexpositions as weighted sum

③ for any newedge that connects new to old vertex-> EDGE -LP

catmull clark subdivision : meshes w/variable polygon

& Add vertex in each face

② too midpoint to each edge

③Connect all new vertices

④ Adjust vertex positions to weighted and

Ray tracing = traces path of light as rays that travel through scene

① cust ray from camera into scene

② check whether rayIntersects any objects in scene

③ Determine how intersecting surface should be shaded

④ If object reflective ->> generate New ray reflecting off surface & trace that ray

↳ h object transparent : refruction occursShell's law to bend light *

⑤ shadow rays : rays cust from pet of intersection toward each light source

⑨ Global illumination : where light bounces off surfaces -> indirect lighting
position of origin

plane equation : (p-p.) . N = 0
S

r(t) = o + td-direction of ray
* ↑

time anthe normal
rector

Ray-plane Intersection : (p-P) . N = 0 t(0 -> Intersection BEHIND origin so

(o + +d =p') . N = 0
INVALID Intersection

(o- p
.) - N + to . N = 0 d . N = 0 -> direction perpendicular to plane's

normal rector= ray is PARALLEL

↳Co-p) . N = 0 -> infinite intersections

(0-p). NO -> zero intersections

sub back into here

Ray-surface Intersection given f(xiy , z) and r(E)

① Set flo +to) = 0 and solve fort ~t=

② pluy values of t back into ray equation y= 0 + t 1 = t ↓
⑤ ID where ray first hits surface

z = 0 + t . O = 0

plug first t back into ray
equation

↑ r(t) = (0 ,
0 ,

0)+ (2-) (1 . 1 , 0)

I 2-, 0)
first Intersection point

Ray-triangle intersection

P= a Po + BP,
+yPz <P= (k b

,
- bz)P + b , Pi + byPz

Let bi = B
= Po-b,Po-byPp + b , Pi + by PzI by= y

- x = 1 bi - by
↓ Plugin P= O + tD

point within triangle O + tD = po + b,
(P, - Po) + by (Pz-Po)

0 - Po = tD+ b ,
(P ,

- Po) + bz(Pz- Po)

M X = b

C- D P
,
- Po +

-
-

Po]() = 0 - P
.

Moller-Trombone Algorithm: efficient way to determine if ray intersects -

t20

01 b, =[]= 0 = bz =

0(1 - b,
- bz =)

Acceleration

Bounding volume Hierarchy = organizes objects into tree structure where eachhool has bounding volume

which encapsulates set of objects/primitives

Goal: reduce # of objects that need to be checked for intersections

Dif ray does not intersect bounding volume -> skip checking individual objects within it

D Always pick the longest axis to divict

② use center of mass to decide their relative pos

③ Keep BVH balanced -> try to ensure same

of triangles for children nodes

Radiometry
FIUX(power wats (W) = total energy per time

amt of radiant flux in

Radiant intensity flux/solid angle I(w)= specificdirectiona
(w/sr) (think flashlight)

how much power is

Irradiance flux/area/solid angle received by a surface

(w/m2) E (sunlight hitting solar panel)

flux/area how much light is traveling
Radiance (W/srm2)

~ (p , w)= from in a specific direction

from a surface

(computer screen from

dift angles)

Lambert's Law power/unit area proportional to

cost = 1 . n -=c

solid angle= measure of how large object appears from given point in 3D space

↳ ratio of subtended area on sphere to radius squared

Regular angle-ratio of subtended

E Sphere= UH stradians are length on circle to radius

hemisphere = Int steradians Ef circle = zit radians

probability

PMF = P(X= X]

Expectation : E[X] = Xi Pi = Sxp(x)ox

CD7 = f(x)=Soct)Ot

becomes
Inversion Method : O Calculate CDE : f(x) = (* (t) ot inverse

- D ↓
② Invent CDF : +"(x) - Set V = cD+ and solve for X

③ sampling X according to p(x)

achieved by sampling UeX = F" (v)

Monte Cano Integration
*good to approximate complex shapes

fr= -Ex & don't need a lot of samples

for importance sampling-> need to map to 10, 1] (v + x)
Xi = -= - vi = 0

vi=+
Xi= + vi =

LighTransport

BRDF = bidirectional reflectance distribution function

a ratio of relectedradiance in given outgoing direction wo to incomingirradiance from dir Wi

~Pol = Le(p
,
wol + S fr CpWwLCPWCOSO

C

Global Illumination = recursively calculate how much light falls onto point p

I bounce : radiance from

light source
-> p -> camera

I bounce : radiancefrompep - cameas

termination conditions

& Russian Roulette : at each bounce
, randomly terminate current ray w/ p(x) = - Por

Importance sampling = sampling MORE from important areas-> reduces variance

cameras & lenses

f
ES

appear

Ino econfusion

·
X

where
traced rays

--- intersect

object distance img distance

Thin Lens Equation : (zo) (zi)
image plane

*

Magnification

M==

vens
[Focal

length
--

↑ ↑ ·
focal focal

↑where image
point

point sensor should
go

Chief ray = pass through CENTER of lens
-

focal ray = emerges parallel to optical axis

parallel ray = directed through focal point on other side
-

focal point= where ing is formed by the lens

For = Janule of scene captured by camera lens

smaller focal length - LARGER For

larger focal length- > SMALLER For

smaller sensor size - smaller for

For = Zarctan (t) hisensorneig, the
* can use similarNiangies w/ E]

circle of confusion= optical spot caused by come of light not coming to focus

smaller aperture -> more concentrated rays -> MORE depth of field Cless blur)
= BIGGER E Stop

large aperture -> shallow depth of field

smaller f-stop -> shallower depth offield

Exposure= irradiance "time "gain

lamer aperture = higher irradiance

F=length
diameterof aperture

E increase in aperture DOUBLES light

X2 shutter duration -> X2 exposure

x21SO gain -> X 2 exposure

shutter duration = seconds sensor exposed to light
150 = sensor's sensitivity to light = how much light amplified

higher 150 -> more noise

simulation

Evleris Method: = f(x , t)

X=position
~ simple & easy to compute

Xt =velucity x
+ +++

= x
*

+ 0txt X errors accumulate

+ = acceleration yt+0t
= yt + xtxt ↳small step size to have Low

-

approximation error

Implicit Euler's Method/Backward Acer's

x
+ +xt

= x
+

+ xt yt
+ot

more stable

yt+ 0t
= x+ + xtyt+ ot

non-linear equations = DIFFICULT

Modified Euler's verlet Integration

Dissipates energy

more stable

Hooke's Law : fats =ks (11b-all-e) fbea = f
- a+b

Tring ↑
length F= ma

constant

Animation

forward kinematics= angles for joints -> computer determines final position

Inverse kinematics = ending position -> compute joint angles to reach position

X no realistic soln

X multiple possible solns -> unique depending on howo constrained

keyframes= important moments in some transition/motion in between start/end

* usually interpolate between them

linear interpolation of rotations

↑ ↑ estraight line

not good match for

right
spectral power distribution = non-negative function giving power in light beam & given wavelength

& characterizes light source * ADDITIVE !

& Watts/nm

Monospectral Distribution = single color

D + G - Sz() + B.Sy(x) = (sss]() = soisp(x)

~Yinas
↑

monospectrum

cone cells = diff sensitivities R

L = orange yellow = Sr(X)s(x)0X

M = green/yellow = frm(x)s(1)0X (i):i)S = blue = (rn(t)s(x)dX
T ↑

response SPD
curve

metamer = 2 Diff spectra w/ same visual (S
.
M , L) response

- reproduce real-world Scenes w/ HARD to recreate spectre

Gamut = range of colors that can be displayed on a devicedevice dependentf

& color matching w/primary lights

↳ not possible: add NEG amt of color into test side

↑ color matching = LINEAR

3 primary colors = necessary for normal

color vision

2 primary colors = red green colorblindness

HumanEye
Rods = primarily in low light, diff shades of gray
comes = "photopic" receptors -> sensation of color

Hve
,
Saturation ,

Value (HSV)

Hue = dominant wavelength (what color) chromaticity Jigram
saturation = how virid the color is

& pure saturated Spectral

at corners , desaturated in center
value = amount of light & does NOT include black

CIELAB = strives for perceptual uniformity

negative color values = gamut not enough
to display soln

virtual Reality
vergence = rotation of eyes to focus on near/far objects

accommodation = eye's ability to change shape of lens to bring objects into focus

* lens accommodate physical screen distance,ot virtual depth

vergence - accommodation conflict = vergence cres of Virtual distance

accommodation cues fixed at display distance

MISMATCH SIGNALS = Visual discomfort

- low-latency tracking/rendering
& monoscopic = both eyes w/ same 360

·

frame -> no stereoscopic depth

* MORE for = enhanced realism -> can reouce angular resolution

↑ real-virtual objects = mixed reality

sensor

& photons enter according to poisson distribution

↳ occurrence of indep events over fixed time interval

↳ ava rate of arrival = X

P(X=x)=
low light = fewer photons arrive

signal has more variability - Poisson shot noise

