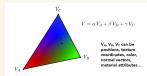

Rasterization = sample points to see if inside triangul Aliasing = high freq signals are under-sampled La can resemble continuous signal of lover freq Anti-aliasing = removing high freq signals before sampling BOX WUY = 0 Select kernel size KKK 1 For each pixel in img, replace its valve w/ AVERAGE of all pixel valves in Lernel 1944 (3) slide kernel across entire ima & SIMPLE DUT FAST suppresumpting = artificially increase sumpling nate above sumpling frequency winding order = owner of vertices of $\Delta \rightarrow$ convention is counter clockwise > IF neg coss product → cw ower → swap 2 vertices Nyquist freq = |fnyquist = 2 fsampling -> NO aliasing from freqs in signal that are LESS Anan byaniot Ecol > Kasuice an sample at 100H2 → Nyquist=50H2 frampling = lowest freq you can sample w/ before aliabing Frampling > 2frignal > If signal = 20 Hz -> sampling ABOVE UD HZ Transformations Homogeneous coordinates = represent point in n-dim space w/In+1 coordinates (KIY) -> (KIY, W) W=1 -> Paint allows as to represent points & rectors in same coordinate system (x, y, t) -> (x, y, ≥, w) w=0 -> nector ISOMETIC = preserve distances between every pair of points on object V Rotations, translations, reflections Coordinate System Change X schling, shearing AR Transformation matrices multiplied RIGHT to LEFT FITP across x-ouis FILE OFFICE ALID [T3] [T2] [T,] = [Final T] origin POINT (1,0) POINT (O,1) coordinate system transformation: (0,U,V) $\begin{bmatrix} \mathbf{o} \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{u} + \mathbf{o} \\ 1 \end{bmatrix}$ 2 UNIT NESS

camera transformation:

honoum makix


$$\begin{pmatrix} r_x & u_x & -v_x & e_x \\ r_y & u_y & -v_y & e_y \\ r_z & u_z & -v_z & e_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

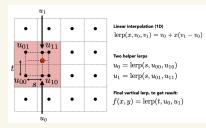
Bary CRATIC coordinates = weighted distance from given point to revices

$$\alpha = \frac{-(x - x_B)(y_C - y_B) + (y - y_B)(x_C - x_B)}{-(x_A - x_B)(y_C - y_B) + (y_A - y_B)(x_C - x_B)}$$

$$\beta = \frac{-(x - x_C)(y_A - y_C) + (y - y_C)(x_A - x_C)}{-(x_B - x_C)(y_A - y_C) + (y_B - y_C)(x_A - x_C)}$$

$$\gamma = 1 - \alpha - \beta$$

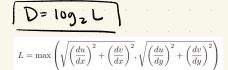
Bused for interpolation


TEXTURE MAPPING = moving from screen space to texture space (UIV)

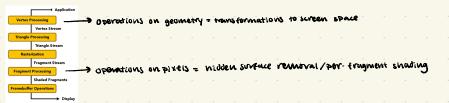
* can interpolate texture coordinates (UIN) w/ U= & U0+ BU1+ YU2
V= &V0+BV1+ YU2

Necurest sumpling = taking color of texel that's closest to bary centric coordinate

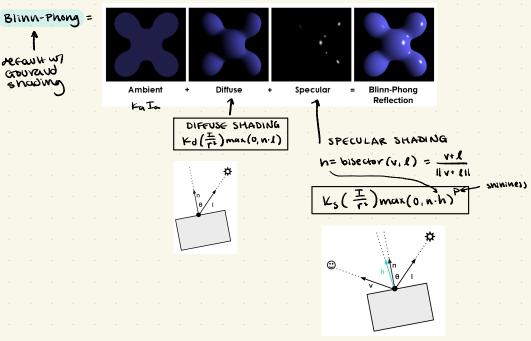
Bilinear sampling = weighted and of 4 nearest texels us 3 LERPs


(x1v.1v1)= v0+x(v1-v0)

MIP-MORPING:


O pre-compute cover res reasons of texture

- @ store textures in mipmap
- 3) Adaptively choose mipmap level D acording to scene



Bilinear = DERP between two mipmap level levels

- (10 ves) \$ BIG jump in texture space = for away -> high level
- * SMALL jump in texture space = close up -> form level

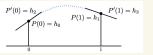
Reflection model

Prioring stransing= interpolate vonex normals perpixel

Gourand shading = compute light por venex

Hidden surface removal: objects anomap - only display what a visible @ front

* track depth = z-value of fragments

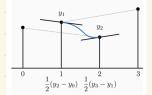

La pixel taxes valve or <u>closest</u> tragment in Z-butter initialized to infinity

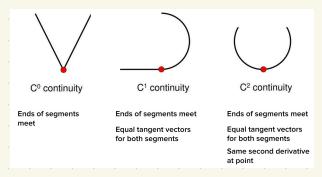
Cubic Hermite Interpolation: combine discrete pts into smape

INPUT: values (p) k derivatives (p') @ endpoints

Output: cubic polynomial mat interpolates

soin: weighted sum of Hermite basis functions


P(+)= ho Ho(+)+ h, H, (+)+ h2H2(+)+ h3H3(+)


Catmull Rom Interpolation

INPUT: sequence of points

- 1) calculate slopes between atternating pts
- @ use Hermite interpolation

output: spline w/ Cl continuity

sa review math

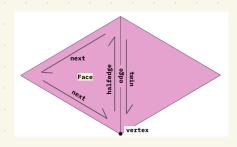
Bezier Curres

Cubic Besier , specify derivatives w/ control points

de casteljav Algorithm = recursively compute intermediate control points through verp

Cutmull Rom = easy to use when you know set of points ahead of time -> ensures

curve passes through All control pts (except maybe enopts)

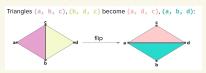

Halfedges = represent meshes to represent 3D shapes

struct Halfedge {
 Halfedge twin,
 Halfedge twin,
 Halfedge 'next;
 Vertex 'vertex'
 Foge 'face;
}

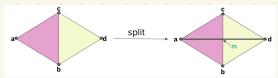
struct Vertex {
 Point pt;
 Nalfedge 'halfedge;
}

struct Edge {
 Halfedge 'halfedge;
}

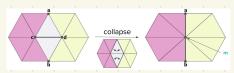
struct Face {
 Halfedge 'halfedge;
}



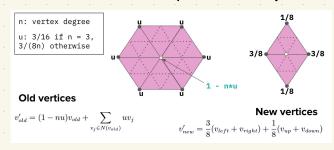
\$ west() to get next edge

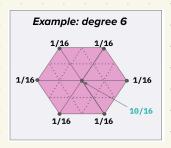

→ twin() to get apposite nattedge

* Review cooling examples!!! *


Edge flip = Flip a nattedge * no elements created or sestroyed *

Edge split = Insent midpoint into halfedge

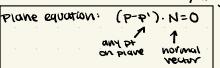

Edge collapse = replace edge (c,d) w/ renex m



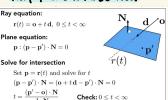
50 boivision : coarse mesh -> smooth algorithmically

LOOP subdivision = for triangle meshes

- (1) Spit each △ face into 4 → new △, new reacter
- @ update old & new renex positions as weighted sum


3) for any new edge that connects new to old vertex -> EDGE FLIP

COLHMUIL CLARK SUBDIVISION: MESHES WY VARIABLE POLYGON


- (1) Add renex in each face
- @ Add midpoint to each edge
- (3) connect all new vertices
- (b) Adjust venex positions to weighted aug

Ray Tracing = traces path or light as rays that travel through scene

- 1) cust ray from camera into scene
- @ check whether ray intersects any objects in scene
- 3) Determine how intersecting surface should be shaded
- (1) If object reflective -> generate NEW ray reflecting off surface & trace mat vary Los H object transparent: refraction occurs & Snell's Law to bond light &
- 5) shadow 1045: rays cust from pt of intersection toward each light source
- @ Global illumination: where light bounces off surfaces -> induced lighting

Ray-plane Intersection:

$$t = \frac{(b, -0) N}{0 \cdot N}$$

t∠0 → intersection BettinD origin so invaliD intersection

- d·N=0 -> direction perpendicular to plane's normal reasor = ray is PARALLEL
 - (0-p')· N=0 → Infinite intrsections
 (0-p')· N≠0 → Jero Intrsection)

sub back into werp

Ray- Whale intersection given f(x,y, 2) and r(c)

- (1) set f(o+td)=0 and solve fort
- i) plug valves of t back into ray equation
- B) ID Where ray first hims burface

$$f(x,y,z) = \frac{(x-2)^2}{4} + (y-2)^2 + \frac{z^2}{4} - 1$$

$$\mathbf{r}(t) = (0,0,0) + t(1,1,0)$$

$$\mathbf{x} = 0 + t \cdot 1 = t$$

$$\mathbf{z} = 0 \cdot t \cdot 0 = 0$$

$$\frac{(x-2)^2}{4} + (y-2)^2 + \frac{z^2}{4} - 1 = 0$$

$$\frac{(t-2)^2}{4} + (t-2)^2 - 1 = 0$$

$$\frac{5}{4}(t-2)^2 = 1$$

$$(t-2)^2 = \frac{4}{5}$$

$$t = 2 \pm \sqrt{\frac{4}{5}}$$
Puly first traction ray equation
$$(t-2)^2 = \frac{4}{5} \implies t = 2 \pm \sqrt{\frac{4}{5}}$$
First intersection point

Ray-Trangle Intersection

$$P = \alpha P_0 + \beta P_1 + \gamma P_2$$

$$P = (1-b_1-b_2)P_0 + b_1 P_1 + b_2 P_2$$

$$P_0 - b_1 P_0 - b_2 P_0 + b_1 P_1 + b_2 P_2$$

$$P_1 = P_0 - b_1 P_0 - b_2 P_0 + b_1 P_1 + b_2 P_2$$

$$P_2 = P_0 - b_1 P_0 - b_2 P_0 + b_1 P_1 + b_2 P_2$$

$$P_3 = P_0 + b_1 (P_1 - P_0) + b_2 (P_2 - P_0)$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_4 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_5 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_6 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + b_2 P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$P_7 = A P_0 + \beta P_1 + \beta P_2$$

$$\begin{bmatrix} -D & P_1 - P_0 & P_2 - P_0 \end{bmatrix} \begin{bmatrix} t \\ b_1 \\ b_2 \end{bmatrix} = O - P_0$$

Möller- trombore Algorithm = efficient way to betermine it vay in +3200 (

$$\begin{bmatrix} t \\ b_1 \\ b_2 \end{bmatrix} = \frac{1}{S_1 \cdot G_1} \begin{bmatrix} S_2 \cdot G_2 \\ S_1 \cdot S \\ S_2 \cdot D \end{bmatrix} \qquad \begin{array}{c} t \ge 0 \\ 0 \le b_1 \le 1 \\ 0 \le b_2 \le 1 \\ 0 \le 1 - b_1 - b_2 \le 1 \end{array}$$

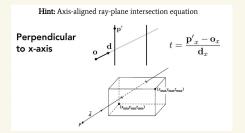
Acceleration

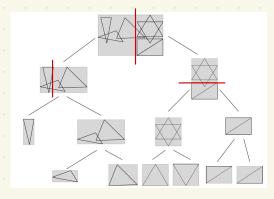
Bounding volume Hierarchy = organizes objects into tree structure where each node has bounding volume which encapsulates set of objects / primitives

Goal: reduce to of conjects that need to be checked for intersections

sif ray does not intersect boundry volume -> skip checking individual objects within it

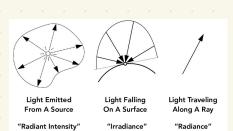
Internal nodes:


- Bounding box.
- 2. Reference to children.


Leaf nodes:

- Bounding box.
- 2. List of primitives in the box.

Intersect (Ray ray, BVH node)
 if (ray misses node.bbox) return;
 if (node is a leaf node)
 test intersection with all objs;
 return closest intersection;
 hit1 = Intersect (ray, node.child1);
 hit2 = Intersect (ray, node.child2);
 return closer of hit1, hit2;



- O Always pick the congest axis to divine
- @ use center of mass to decide their relative pos
- (3) Keep BUH balanced -> try to ensure same to be transper for children nodes

Radiometry

Elnr(bones)	warts (W)	$ \Phi = \frac{9F}{90} $	total energy per time
Radiant Intensity	flux /solid angle (W/SY)	$\Gamma(m) = \frac{qm}{q\overline{g}}$	amt of radiant flux in specific direction for solid angle (mink flashlight)
INAM MINGE	flux/area/solid angle (N/m²)	$\varepsilon(x) = \frac{\partial \overline{c}(x)}{\partial A} E = \frac{\overline{c}}{A} \cos \theta$	(suntight litting some pane) received by a surface how much power is
Raviance	(W/SV M2)	$L = \frac{\partial^2 \overline{\Phi}(P, \omega)}{\partial \omega \partial A \cos \theta}$	how much light is traveling from in a specific direction from a surface (computer screen from
		$L = {}_{\mathrm{d}A}$ ${}_{\mathrm{d}\omega}$	diff angles

Symbol/Name	Radiometry Unit/Name	Photometry Unit/Name	Effect of Increased R	
O. F	Radiant Energy	Luminous Energy		
Q: Energy	Joules (W-s)	Lumen-sec	-	
Φ: Flux (Power)	Radiant Power	Luminous Power		
Ψ: riux (rower)	W	Candela-sr	-	
I: Angular Flux Density	Radiant Intensity	Luminous Intensity		
1: Angular Flux Density	W/sr	Candela = Lumen/sr	-	
	Irradiance (in),	Illuminance (in),		
E: Spatial Flux Density	Radiosity (out)	Luminosity (out)	4	
	W/m ²	Lux = Lumen/m ²		
L: Spatio-Angular Flux	Radiance	Luminance		
Density	W/m²/cr	Nit = Candela/m ²	=	

Physics Symbol/-	Radiometry	Photometry	Definition
Name	Unit/Name	Unit/Name	Deminion
O Emanary	Radiant Energy	Luminous Energy	$Q = \int_{t_0}^{t_1} \Phi dt$
Q Energy	Joules (W⋅s)	Lumen·sec	$Q = \int_{t_0} \Phi a \iota$
Φ Flux(Power)	Radiant Power	Luminous Power	$\Phi = \frac{dQ}{dt}$
Ψ Flux(Fower)	W	Lumen (Candela·sr)	$\Psi = \frac{1}{dt}$
I Angular Flux	Radiant Inten-	Luminous Intensity	$I(\cdot,\cdot) = d\Phi$
Density	sity W/sr	Candela (Lumen/sr)	$I(\omega) = \frac{d\Phi}{d\omega}$
E Spatial Flux	Irradiance (in),	Illuminance (in),	
E Spatial Flux Density	Radiosity (out)	Luminosity (out)	$E(p) = \frac{d\Phi(p)}{dA}$
	W/m ²	Lux (Lumen/m²)	
I Cnatio Angular	Radiance	Luminance	$I(p, \omega) = d^2\Phi(p, \omega)$
L Spatio-Angular Flux Density	W/m²/sr	Nit	$L(p,\omega) = \frac{d^2\Phi(p,\omega)}{d\omega dA\cos\theta}$ $= \frac{dE(p)}{d\omega\cos\theta} = \frac{dI(p,\omega)}{dA\cos\theta}$
Flux Delisity	vv/III-/Sf	(Candela/m²)	$=\frac{d\omega}{d\omega\cos\theta}=\frac{d\omega}{dA\cos\theta}$

Lambert's Law

Power/unit area proportional to $Cosb = 1 \cdot N \rightarrow E = \frac{1}{2} cosb$

solid angle = measure of now large object appears from given point in 3D space

la ratio of subtended area on sphere to radius squared

$$\mathcal{D} = \frac{V_r}{V_r}$$

spinere = UTT stradians hemisphere = ZTT steradians Regular angle=ratio of subtended are length on circle to radius

$$\theta = \frac{1}{r}$$
 civele =

civale = 277 radians

$$dA = (r d\theta)(r \sin \theta d\phi)$$

$$= r^{2} \sin \theta d\theta d\phi$$

$$d\omega = \frac{dA}{r^{2}} = \sin \theta d\theta d\phi$$

Probability

PME= P.CX=x]

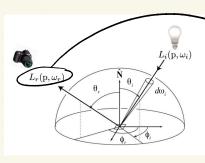
Expectation: $E[X] = Z \times_i P_i = \int_i x P(x) dx$

CDF = F(K) = \ P(E) dt

- 0

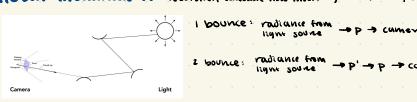
(3) INVENTION WELVING: (1) COLCULATE COE: E(K) = (K) = (K) = (K)

3 sampling X according to PCK)
achieved by sampling U-> X=F-'(U)


Monte Cano Integration

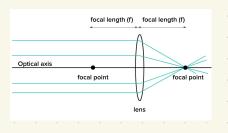
$$F_{N} = \frac{1}{1} \sum_{k=1}^{N} \frac{f(x_{i})}{f(x_{i})} \longrightarrow E[F_{N}] = \int_{P} f(x) dx$$
\$ 8000 to appreximate complex snapes

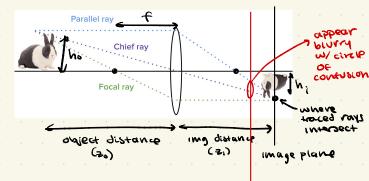
for importance sampling \rightarrow need to map to $CO_{i}IJ$ $(u \rightarrow x)$ $X_{i} = -\frac{\pi}{2} \rightarrow u_{i} = 0$ $X_{i} = \frac{x_{i}}{2} \rightarrow u_{i} = 1$


BRDF = bidirectional reflectance distribution function

pratio of reflected radiance in given outgoing direction we to incoming irradiance from dir we

L_V(P₁w₀) = L_e (P₁w₀) + ∫ f_Y(P₁w₁, w₀) L₁ (P₁w₁) cos θ; dw₁

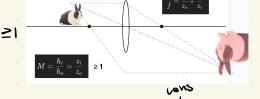

Global Illumination = recursively calculate how much light falls onto point p

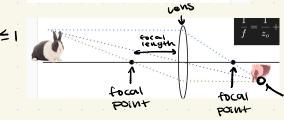


termination conditions

* RUSSIAN ROULEtte: at each bounce, randomly terminate current ray w/ P(x)=1-Pr/
IMPORTANCE Sampling = Sampling MORE from Important avecs -> reduces variance

Cameras k benses



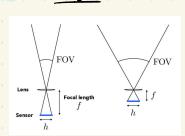


min lens Equation:

Magnification

$$M = \frac{h_i}{h_0} = \frac{z_i}{z_0}$$

al where image not sensor should go


cnief ray = pass through CENTER of 1ens

focal ray = emerges parallel to optical cixis

parallel ray = directed through focal point on other side

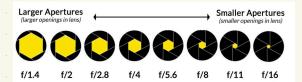
focal point = where img is formed by the 1ens

FOV = [angle] of scene captured by camera lens

smaller focal length -> LARGER FOV larger focal length -> SMALLER FOV Smaller sensor Size -> smaller FOV

 $FOV = 2 \arctan\left(\frac{h}{2f}\right) \quad h = sensor height$ f = tocal length

* can use similar triangles w/ | h


circle of confusion = optical spot caused by come of light not coming to tocus

Smaller aperture -> more concentrated rays -> More depth of field (1815 blur) = BLEGER & Stop

lame aperture -> shallow depth of field

smaller f-stop - snallower depth offield

Exposure = irradiance + time + gain

Lamer aperture = higher irradiance

F# = focal length

diameter Of aperture

17 increase in appraise bourses light

x 2 shutter duration -> x 2 exposure

×2 150 gain -> x2 exposure

snutter duration = seconds sensor exposed to light

160 = sensor's sensitivity to light = how much light amplified

higher 150 -> more noise

Simulation

Eulevis Method: $\frac{dx}{dt} = f(x_1t)$

xt = position xt = velucity

x = acceleration

I simple be easy to compute

x errors accumulate

Lasmall step size to have Love approximation error

Implicit Euler's Method / Backward Evievis

more stable

non-linear equation = DIFFICULT

Modified Euler's

$$egin{aligned} oldsymbol{x}^{t+\Delta t} &= oldsymbol{x}^t + rac{\Delta t}{2} (\dot{oldsymbol{x}}^t + \dot{oldsymbol{x}}^{t+\Delta t}) \ & \dot{oldsymbol{x}}^{t+\Delta t} &= \dot{oldsymbol{x}}^t + \Delta t \ddot{oldsymbol{x}}^t \end{aligned}$$

$$\begin{split} \boldsymbol{x}^{t+\Delta t} &= \boldsymbol{x}^t + \Delta t \dot{\boldsymbol{x}}^t + \frac{1}{2} (\Delta t)^2 \ddot{\boldsymbol{x}}^t \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \frac{\boldsymbol{x}^{t+\Delta t} - \boldsymbol{x}^t}{\Delta t} \end{split}$$

Dissipates energy

more stable

Hookers Law: faso = Ks 110-all (116-all-1) f b = a = f - a = b

NoitominA

angles for joints -> computer othermines final position Forward kinematics = Inverse kinematics = ending position -> compute joint angles to reach position x no realistic soln

X multiple possible soins -> unique depending on how 0 constrained Keyframes = important moments in some transition/motion in between stary/end

* usually interpolate between them linear interpolation of votations

stronight line NOH good mater for

bight

Co,13

spectral power distribution = non-negative function giving power in light beam @ given wavelength * ADDITIVE! & characterizes light sounce 4 watts /nm

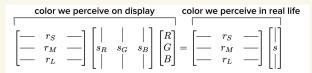
MONOSpectial Distribution = single color

$$\begin{bmatrix}
R S_{R}(\lambda) + G \cdot S_{G}(\lambda) + B \cdot S_{B}(\lambda) \\
S_{R} S_{G} S_{G}
\end{bmatrix} = \begin{bmatrix}
R G G G
\end{bmatrix}$$

monospectour

cone cells = diff sensitivities

$$L = \text{ovarge Hellow} = \int r_{L}(\lambda) s(\lambda) d\lambda$$

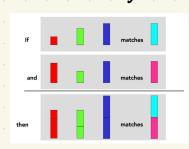

$$M = \text{green Hellow} = \int r_{m}(\lambda) s(\lambda) d\lambda$$

$$S = \text{bive} = \int r_{L}(\lambda) s(\lambda) d\lambda$$

$$\text{response SPD}$$

$$\begin{bmatrix} S \\ M \\ L \end{bmatrix} = \begin{bmatrix} -r_s - \\ -r_L - \end{bmatrix} \begin{bmatrix} 1 \\ S \\ 1 \end{bmatrix}$$

2 DIFF spectra w/ same visual (S,M,L) response * reproduce real-world scenes w/ HARD to recreate spection



Gamut = range of colors that can be displayed on a device & Device oppendent *

* color matching w/ primary lights

not possible = add NEG amt of color into test side

* color matching = LINEAR

3 primary colors = necessary for normal MOISIL YOLD

2 primary colors = ned green colorblindness

Human Eye

Rods = primarily in low light, diff shades of gray cunes = "photopic" receptors -> sensation of color

Hue, Saturation, Value (HOV)

Hue = dominant wavelength (anat color)

Saturation = how vivid me color is

valve = amount of light

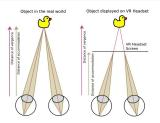
chromaticity Jigram

, pure saturated spectral

at corners, desaturated in center

a does NOT include black

CIGUAB = Strives for perceptual uniformity


negative color raives = gamut not enough to display soln

virtual Reality

remence = notation of eyes to focus on near/far objects

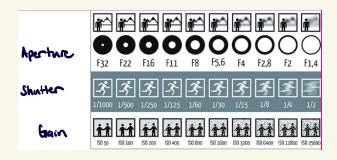
accomposation = eyers ability to change shape of tens to bring objects into tows seens accomposate physical screen distance, not virtual depth

vergence - accomposation conflict = vergence cues of virtual distance

accomposation cues fixed at display distance MISMATCH SIGNALS = VISUAL discomposition

- * Low-latency tracking/rendering
- * manoscopic = both eyes w/ same 360° frame -> no stere oscopic depth
- * More FOV = enhanced realism -> can reduce angular resolution
- * real+virtual objects = mixed reality

sensors


photons enter according to Poisson distribution

Loccurrence of indep events over fixed time interval

Local rate of arrival = λ

$$P(X=x)=\frac{\lambda^x e^{-\lambda}}{x!}$$

low light = fewer photons arrive signal has more variability -> Poisson shot noise

