
MATH REVIEW
Bayes Rule! Prior Matrix Derivatives

↓ transpose of

PSD A 20 partials

- *x(w+X) = w
AvonAvo Pineposteror

sud/EUEVT EXPECTATON
*

x (WTAx) = At w

- -x(wTAx) = wXT
U cols = eigenvectors of MMT

~ cols = eigenvectors of MTM -x(x+Ax)= (A + AT)X
Xi =E Ei = Si variance

spectral +um/QAQT var(X] = Eff(x)] - E[f(x)]
=

covariance *maximize
neta

for square symmetric matrices

A = eigenvalues of A FENSEN iNEQUAL COV(XIY] = ECXY]-EEXJECY]
f(tt , + (1- t)Gz)

Q = eigenvectors of A = excal+#)f() Orthonormal rectors
Iso contours = ellipses centered

around dist's mean If W orthogonal , then witw=
w ,

+
wz= 0

to find direction of major axis :

11 Norm Jacobian
①find eigenvales/eigenvectors Frobenius Norm

②find eigenvector correspondingto 11 XIII=i
llAll=j

=

(largest eigenvalve

covariance matrix ↳ Norm = Frata)=(X= Az +
M where zr No

,
In i = 1

#At zero mean 1IXII2= singular vacs Hessian

& diagonal entries = variances %=t
,

where Xi= eigenvasa H = 02(x)

=& off-diagonal = covariances 11x1k = xTX

& uncorrel - 45 = E[X]E(Y]ated EXX
Normal Gaussian PDF

Lagrangian multiplier OUTER PRODUCT FORM RELU
2(x,Y ,

X) =

AXN
on

x+
X = EXiX;

T

N(x(m,02)=exp)
RELUCX) = [XXconstrained

exampleconstraint
1(w , llz =

Lagrange MULTIVARIATE GAUSSIAN
argmin

- wisw+twTw - 1) Tw, S

SIGMOID FUNCTION

sample covariance p(x)= exp(x-mxlit data centered

LIKEL HOOD FUNCTION covariance o = 2x+ Xw - 2XTY

G(x) =
+ 2xTy = 2XTX invertible

examples : -
1 + exp(-z) p(X(m , (2) = FN(X(m,)LPPAPCOAPCcBI wP = (xTX)

-
XTY

- prone to vanishing
gradients event= count

LOG-LIKELIHOOD L(0) = P(X, (t)" . P(xz(f), ... P(xm(0)km L(w)=P( = y ; (xi)

Take log of ((f) ↑
MLE = max likelihood estimation = finding param valsto maximize

likelihood function
since log is monotonicallyincreasing

argmaxp(x,xxIm e(p) = 10g2) + 4(09p+ 2log(1-p)

((m,
E) = loy(p(x= (m,))

* xiX invertible when full rank E=+ = 0 + p
=

1- P 3
* exponents - multiplication

& products e sums * features > num data points = undetermined
Take derivative wrt p for other var)

↳ use regularization

MAP = maximum a posteriori e datapts > feathes = overretermined and set = o RIDGE REGRESSION
* underdetermined models

↑point estimate of param to 2= (y - Xw)T(y- Xw) +Hi
·uniecansLINEAR REGR

-

maximize posterior X y = Xw

EMAp =
argmax

P(OIX) 2 =
armin /ly-Xwll we_ inenible who Penalty n

is

W

⑦
* incorporates prior

wa = (XTX)
-

XTy ↓ ASSO REGRESSION
_ arymaxP but m De NOT

Y = XT(X+X)- XTY * induces sparsity/ () Norm

Emai = armax p(x(0)P() = armax(px) wa = argmin(y-Aw)(y-Aw) + XIIl

* sharper corners = more space



· GENERATIVE CLASSIFIER DISCRIMINATIVE CLASSIFIER LOGISTIC REGRESSION

featres = X
,

Labels = Y Model conditional probability Goal : find probability
& model probability dist for

distP(Y(X) directly that input X belongs
both classes & learning parms to a certain class

that best fit this distribution
&uses sigmoid function for binary

P(y = 1(x)

① Model each class P(XIY) and P(Y) P(= 1/X) = -(w++=recor
P(y=1(xiw)=BA

& use Bayes to compute p(Y() & softmax for multiclass classification

Neural network CROSS ENTROPY LOSS PRO Ply=KIX)= P(y= O(Xiw)=x

whenz= wix

Daj'= Oe- (pre activation value forC= -y. Indy)
inste + 9

jth muron in layer l batch of m samples i= 1 109-000s = log(i)
weights neurons from over layer =- In () negativC= - yloypz-cy) logt② ge(a) * want to minimize loss

a minimize using SGD StOCHASTIC GRADIENT DESCENT↑ &pre-activation value

activation for I layerNee
value wrt weight

Ot=+- EtVot(Xiiii0)function

③ ge =R -> # activation function ↑
&partial of pre-activation

element wise
Backprop :

audienitnation loss ↑
① forward pass : calculate preactivation value value

->
apply activation function

activatina ↓

② Backward pass : - Take gradients of loss wrt parms of each layer Indicato
- use chain rue to propagate backwards

-update weights w/ gradient descent after gradients calculated Normalization when training deepretworks

convolutional neural networks MEAN STANDARD DEV

*skip connections to M =2Xi=t-convolutional filter : same weights applied across deal / vanishing it [n] -

many different locations gradients
subtract

SEQ2 SEQ MODELS ATTENTION
↑

# of channels ①Transform encoder

-pooling layer : downsample image
activation to key

Le introduces translational invariance ② Transform decoder

activation to query
③ attention sore =

take softmax

POOLING
g

of
make prediction dot productof query /key)

CONVOL UTION ① softmax to normalize

PCA =principal component analysis attention -linearcombinationis

attention scores

step by step : keyscomputea ⑤ send all of hi ha
values of encoder

① center the data around the mean

through linear combo
② compute corariance matrix & = XTX

③ Eigendecomp : xiX = QDQ" or use SVD X = UCVT dictated by softmax of

① keep top k eigenrecting QKQ , lik v = eigenvectors XTX
atte scores

⑤ project points down to subspace -> principal component scores MULTIMEAD ATTN
* final Jim reduced data :

Xk = Q ER
*

SELE ATTENTION
↳ to reconstruct : Freconc = YQ" = XQQ] multiplekeveiep

↑ recon loss : 1

reco-
want smallest error posare

* nonlinearities
· want k

, 9, vfor acons

reconstructed
* masked decoding

--SNE = computed shortest pairwise distance ↳ not allowed to

look at future values
between points

& t-distribution = distribution heavier tail

TRANSFORMER
1+ 114 :

- xj 112)-

Qji =

Sick (1 + 11y:
- Yuk)+

change in computing stochastic neighbors
* stacked self atte layers

w/ pos wise n on linearities

& easily parallelizable

POSITIONAL ENCODING

* keep overing
-> use periodicity



↳ means clustering BayesOptimal Classifier ConditionalIndep

arguin & [11x112 Vorono; ressellation aH(b ,
c) (doesab(d

! For evclidean metric
P(y=c(X)= ↓

Steps :

all boundaries = linear
CE[C] ↑ (a , b , c(d) = p(a(d) p(b, c)))

↓ Bayes Decision Boundary EP(a ,
b

,c(d) = Ep(a(d)p(b, <d)

-

11(X- X
* (((y= ((x-xzl -

softko means : use softmax ofiX**x When I probabilities weighted /cost p(a , b(d) = p(a(d)p(b(d)
soft partitiont distances

i = 1

are equal

Vik= softmax (G= B11x =
- c 11-3) L (1 , 0) P(y = 0(X) = (10 , 1) P(Y = 1(X)

K:

Erin Triplet Loss : minimize distance between reference & pos same
-

maximize distance between reference & neg sample

Mixture of Gaussians : model cluster Ctriplet= max (0
,

d (Xancuar , Xpos)"- & Xanchor
, Xneg)+ margin)

as non-spherical Gaussian
N .pair loss = comparew/multiple neg samples at same time-

Likelihood : Li = p(Xi)=p(Xi= k)
En-pair = log(exp(X-XXj

=P(X : 1z = = 1) P(z;= k) = N(X: (Mk, Ex)p(zi=1)
- Markov assumption:

k= 1
k= 1

learn these params Markov chains

Kleinberg Impossibility The Q=
9 , 92 ... 9N -> N states

P(q :
= a(9, gin) = P(qi = a(q : -1)

A = 9 11912 Anne transition probability matrix A where

varistingsamustersame
aa

&ij = Prob of moving
from state i toj

= I t N - Initial probability dist overstates
classifier decision outcomes sensitivity=trulpos

for states X... Xu : Joint dist : P(X
. Xni -Xn) = P(X)p(XIX

specificity
alney w/ no indepence assumptions : min # params = kT-

miss rate=
# actual pul

Hoden Markov models
# states

Fallout
#actual neg revents interested in cannot be observed directly

Bias-variance

Bias = avg diff between model output truth HMM has

↳underfiting s
for regularizationa · G ① set of K stakes

in (KJ = 31 ... k3
increasingX ② imusition matrix A where rows som to

↓ -

variance =

variance less flexible model ③ sea of observations Y1 +
= (4 .

... Y+)
over all possible train prevent overfitting

↳ Emission prob=Xsets
higher bias -
lower variance

prob of observation Yz : / generated from
State Xt = K

2) ⑤ initial probability distribution (Tti)

· Viterbi Algorithm : find the most likely sequence of hidden state in HMM

St(j) = max(6t-1
(i) aij] - bj(ot)

I & Dynamic programming
+ backtracking

kNN Algorithm (supervised)
O for each training sample (X:Ni) ED

compute distance between x and X
;

② choose set of training samples with K

smallest distances

③ return majority label of samples in N

Pros :

I Cons :

No training High storage cost

slow inference
learns complex nonlinear functions

curse of dimensionality

(worse in higher dim)
Decision trees

Bagging : train M models with n' samples
, sample

At each node : split by feature -> traverse until you
nit a leat nodeoutput ~ ItH replacement -> REDUCES VARIANCE

Next best attribute =

Greedy Algorithm :

feature + Split that Max Random forests : same as bagging but at each
-

into gain , mo entropysplit ,
choose only random subset pl =- features

-

proponion oetal twinednparallare:basting
Entropy : H(y) = Ey(-10gP(Y)] ↓

=

- [P(y = k) logP(=k) reighted any model : Y meighed=mYm()
K bagging m=

surprise =- log(P(Y= K))

conditional entropy : H(Y(X) = [p(x)H(y(X= x) Boosting : Otrain next model conditioned on all prev models t weights

XEX ② reweight models to minimize loss

into gain : ICS, A)= Entropy(s) -E entropy (s) ↓ ③ repeat

Binary (e) rEvalves (A) Xtrained Sequentially

into gain:ChtR) -(tr+Cr+ H(R) ofouces bins by weighting misclassified points more
-

& stumps better for boosting



probabilistic Graph models X-algorithm Kernels : run model of high
Node = random variable ①Initialization : a (X) = P(Xe , Y1 : t) dim set of features wo blowing
Edge = dependence relationship & recursive : c(X +) = p(y +(Xt)[c(X+ -1)P(X + (X + -1) + > up complexity

2 ① project features to higher Jim space (x -> 0(x)①FintDialp(b)p(a, b)p(d))
② Rewrite all training/inference w/ onlynerproducts between features

① #ofparams = 1 + 1 + 4 + 2 = 8 # (xi)TP(xj)

⑤ P(1 : S) = p()P(2)))P(3/1) P(4(2 ,
3)P(5 , 2 , 4) ③ Write Kernel function that computes inner products between high-dim

#ot params = 1+ 2 +2+ 4+ 4 = 1
features

k(xi , Xj) = 0(xi)
+

((xj)

Mankov Decision Process (MDP) 2 conditions for Kernel

Transition Dynamic: P(StRelSt) OK has inner product rep : JER:
eit st

& conditioning on all history = conditioning UXiX;
ERO k(xi , xj) = <E(i) , E(Xi)>

on just previous state

& Maximize sum of discounted rewards/return ② for every sample X .... Xn ER

Return : Gt = Rt + 1
+ yR + +z

+ y Re+ y
+ ...

=[ ] is PSD (aTka20]
=**Rz + k+ 1

= Rz + 1
+ yGz+ 1

* cond I implies cond 2 ad
k=0

State value : V+
(s) = E+ (G

+ /St = S] = En [R+ +1
+ yG + +

(St = s] conv layer output :

H = /* + /

Action value :

9 +
(s

,
a) = En (G

= (St = s
,

Ac = a) = En (R++
+ yGt+ (St = s

,
A +

= a]

Bellman equation S(z)=e-= S(E) (1-S(z))
value function : V+ (s) = E

+ (q+
(s , a)] = 2 + (a(s)q(s , a) d

For R(s] at A = f(x) where +(x) is PDt : -Xf(x)
VP(s) =R(s) + umaxP(ssavs policy leration

①Init value func & policy randomly
for R2(5 , a)

② policy evaluation
V (S):* (R(s, a) + y [P(s, aV] S police improvementa J repeat until converged

for RCs ,a ,
al)

Va =mux[P(ss, u)[R(sast]

Qfunction : G(s , a) = R(s , a) + y & P(s' (s , a) V(s)

Policy Eval : v(s) = Ent(als)Q(s, a)

Policy improvement : it (s) = argmax Q(s, a) forearas
valueIteration : v(s) = max QCs, a I S

Graph Neural Networks

Msg passing ~/ either convolutional/attentional

mechanisms

Aggregation function : permutation Invariant
-

* will it change if you TofLPA) = -(A)
permute input? ↓ yes

Neural network : permutation equivariant

permutation of argument= same permutation output

* f(pA) = P + (A)
&

translational -earivariance /] -1: has diff result

rotationalvariance
D eit has same result * y log P(y)=

langevin Manc Least Squares Denoising
score-based generative

: So(x) * Vx 109 Ponta (*) Easier to sample if we ·
models

① Add Gaussian noise

Lannevinoams an :
X ++

= X+
+ n*xlogPoata(x +) +zyzz ② sample from noisy distribution e* (y) = y + 0

= vlogp(y)

⑤ Denoise noisy to clean

↳ get new samples where Et-NCO , 1)
-(e(y)) = J11x-e(y)()p(x)p(y(X)0X

Score func : Xylogp(y) = J [4*

(4) -y]
earning score-based models :

① Max likelihood :

min Epota (logpo(x)]
e

+ (x) = E(X(y] = Sxp(x(y)0x Langevintosamesepause
② score matching :

min Eponta (118xlogp(x) - So(x)(12]
=Sxx ↑

③ Denoising approaches
= EXPCPX

Normal


